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Abstract This study focuses on the evaluation of factors
influencing the quality (accuracy and reliability) of non-
adult dental age assessment from radiographic stages of
permanent teeth (excluding the third molar). We used four
distinct cross-sectional samples of 1,528 healthy children: 3
of known geographic origin (Ivory Coast, Iran and France)
and 1 additional sample of children whose grandparents
originated from a different continent. Two different meth-
ods of calculations are compared: the correspondence anal-
ysis combined with linear regression (CAR) and Bayesian
predictions (with no independence assumption). Our results
indicate that the quality of age assessment does not seem to
depend predominantly on the use of geographic-specific
standards. In the case of Bayesian predictions, we observed
a clear trend in favour of significantly higher accuracy and
reliability levels when using non-geographic-specific stan-
dards. One of the main advantage of Bayesian predictions
over maximum likelihood methods of estimation is an

overall increase in accuracy with high levels of reliability on
a fraction of the test sample and, importantly, across all age
categories (contrary to methods based on regression anal-
ysis). Importantly, in the case of Bayesian non-adult pre-
dictions, and contrary to age estimation techniques based on
regression, a better quality does not depend on age.

Keywords Age . Estimation . Accuracy . Reliability .
Geographic-specific . Bayesian

Abbreviations CAR: correspondence analysis and
regression . DMS: dental mineralisation sequence . GMI:
global maturity index . SEE: standard error of the
estimates.

Introduction

Dental age is one of the measures of physiological devel-
opment that is theoretically applicable from birth through
late adolescence even if the interrelationships between the
somatic, dental, skeletal and sexual maturity are not fully
understood. Dental age assessment is common in ortho-
dontic and pedodontic practice in order to plan the treat-
ment of different types of malocclusions in relation to
maxillofacial growth. Dental age is also used as a maturity
indicator in pediatrics, orthopedic surgery, forensic science
and physical anthropology. Dental age is estimated by
comparing the dental mineralisation status in a person of
known, or unknown, chronological age with dental devel-
opmental surveys, standard charts compiled from a large
number of persons of known age and in a well defined
geographic region (i.e., a reference sample). This involves
the critical presumption that the growth rate of the refer-
ence sample is representative of the sex, ethnic, and re-
gional background of the person being evaluated (for
whom dental age is estimated). Several methods of dental
age assessment in non-adults have been used: the atlas
method of Schour and Massler (1940), the specific stan-
dards from the assessment of radiographic stages by
Demirjian et al. (1973), the diagram of Gustafson and Koch
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(1974) and the length and weight regression equations of
Deutsch et al. (1984). There is very little information of
within and between human population variability in crown
and root mineralisation timing and patterns. As a result,
some research groups challenge the existence of a signif-
icant variability within and between the extant human pop-
ulations sampled so far. For example, Scheuer and Black
(2000) consider that “some of the conclusions that claim
population, and other differences are more likely to be due
to the use of statistical treatments, or to sampling effects,
rather than real differences between samples”. In this case,
large variations in relative dental mineralisation are con-
sidered tomore likely reflect methodological problems rath-
er than human diversity.

Geographic-specific standards:
accuracy and reliability

Even if true biological differences exist between samples,
methodological disparity between studies is undoubtedly
an important factor influencing the quality (mainly accu-
racy and reliability; see methods section) of dental age
assessment (see Liversidge et al. 1998 for review). Most
studies emphasising differences both within and among
populations, and concluding that dental age assessment
is dependent on the sample on which it is to be tested,
consider the regional background, sex, chronological age
distribution, and “ethnicity” as the main variation factors
(Hägg andMatsson 1985; Staaf et al. 1991; Davis and Hägg
1994; Koshy and Tandon 1998). As regards other possible
sources of variation, opinions diverge and most other
putative variation factors are not sufficiently known. For
example, cultural or environmental (e.g., socio-economic
status, nutrition, dietary habits) but also endocrine factors
have been considered of no effect (e.g., Garn et al. 1965a,b;
Voors 1973) or, on the contrary, of considerable effect (e.g.,
Gulati et al. 1990; Bhargava 2000) on the rate of an in-
dividual’s progress toward maturity. Therefore, many stud-
ies reach the central conclusion that no universal system for
dental age assessment has been achieved and that maturity
standards should be geographic-specific, i.e., based on stud-
ies made on the same geographic population for which they
are going to be used. Are quality criteria, mainly the accu-
racy (the mean difference between dental and chronological
age) and reliability (the range and percentage of the con-
fidence limits), of a method for dental age estimation solely,
or predominantly, dependent on the use of geographic-spe-
cific standards in which regional background, sex, chrono-
logical age distribution, and “ethnicity” would be the main
controlling factors? This question represents the first issue
that we aim to examine in this paper. This is problem num-
ber one.

Dental age calculation methods

Comparisons between growth studies of differing design
and methods are beset with problems. Significant differ-

ences between dental age and chronological age may be the
result of differing methodology rather than a true reflection
of the populations (Staaf et al. 1991; Liversidge 1994).
Various chronologies and radiographic stage methods have
been used for dental age estimation of non-adults using
deciduous and/or permanent teeth (Gleiser and Hunt 1955;
Garn et al. 1958, 1959; Nolla 1960; Fanning 1961;
Moorees et al. 1963a,b; Haataja 1965; Nanda and Chawla
1966; Wolanski 1966; Haavikko 1970, 1974; Fanning and
Brown 1971; Liliequist and Lundberg 1971; Demirjian et
al. 1973; Gustafson and Koch 1974; Anderson et al. 1976;
Demirjian and Goldstein 1976; Nyström et al. 1977, 1986).
In this paper, we focus our attention on the pioneer study of
Demirjian et al. (1973), assessing maturity of children of
known age by means of eight radiographic stages. Each
tooth having a stage is converted into a numerical score
using a conversion table. The scores of all teeth are then
added together to give the global maturity index (GMI)
which can be converted directly into a dental age using an
appropriate table of standards. At this stage, two important
methodological issues should be stressed:

– The conversion tables are obtained by Demirjian et al.
(1973) by means of a weighted score (reviewed by
Demirjian 1986) based on the principle of skeletal age
by assessing maturity from wrist ossification status by
Tanner (1962).Other conversion tables are obtained by
Demirjian and Goldstein (1976) by using the mathe-
matical model proposed byHealy andGoldstein (1976).
However, some scholars consider that this mathematical
model is not satisfactory because it gives significantly
higher weights to advanced stages of maturation (Proy
and Gauthier 1985).

– The tables of standards can be obtained by using the
linear regression analysis (e.g., Koshy and Tandon
1998) or centile distributions (Demirjian et al. 1973) to
derive the relationship between the GMI and chrono-
logical age. The use of regression analysis for ordinal
data (GMIs are derived from radiographic stages and
therefore represent a series of discrete values) may be
responsible for some problems as already emphasised
by Lucy et al. (1996) who consider that there is not
“any rationally justifiable reason” for the use of re-
gression analysis “in situations that involve categorical
or ordinal data.” Among the five assumptions of re-
gression analysis listed by Lucy et al. (1996), we should
expect partial correlations between the radiographic
stages for each tooth to approach zero, when controlled
for age, all the teeth contributing the same amount of
information about age. Moreover, the scores should
vary continuously with age. In fact, the stages adopted
by Demirjian et al. (1973) and Demirjian and Goldstein
(1976) do not approximate the continuous phenomenon
of dental mineralisation. We deal with an ordinal vari-
able. The use of balancing mathematical models or of
statistical procedures not adapted to categorical data
may be responsible for some of the problems encoun-
tered in dental age assessment. Methodological alter-
natives do exist and this represents the second issue
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that we aim to examine in this paper. This is problem
number two.

Objectives

This study has two distinct objectives. The first objective is
to focus on the question of whether the regional background
(or “ethnicity”, see material section), sex, chronological age
distribution of the sample sets, and statistical procedure
represent major factors controlling accuracy and reliability
in non-adult dental age assessment.

Besides the study of the possible factors influencing
(with their relative contributions) non-adult dental age
assessment, the second objective of this study is to apply a
Bayesian statistical procedure and to provide clear infor-
mation about the quality level of our trials. In the context
of this study, the procedure for the evaluations and compar-
isons of quality of trials is based on performance (defined
in the methods section), accuracy and reliability. Our “indi-
vidual age assessment” approach should be distinguished
from the techniques of estimating population age struc-
ture in palaeodemography (in particular, when selecting
prior probabilities, see methods section). We focus on the
Bayesian method because it represents a statistical alter-
native well adapted to the analysis of dependent attributes,
or categorical data (radiographic stages of dental develop-
ment). We aim to discuss clearly the advantages and draw-
backs of the Bayesian predictions, with no independence
assumption, used in this study.

Materials and methods

Material

Our 3 geographic population samples consist of cross-
sectional standardised orthopantomographs of the teeth of
262 children aged 49 to 194 months (108 boys and 154
girls) from The Ivory Coast, 393 children aged 69 to 197
months (136 boys and 257 girls) from Iran, and 454
children aged 45 to 192 months (212 boys and 257 girls)
from France. All the children are of known chronological
age (in months; from the birth date to the time of taking of
the radiograph) and, importantly, “ethnicity” (their grand-
parents originated from the same country and/or the same
geographic area). An additional sampling was made in
France. Most of the children from this sample were born in
France and have one or more of their grandparents not
originating from Europe (originating mainly from north or
west Africa). This additional sample comprises 404 chil-
dren aged 49–191 months (170 boys and 234 girls). Age
and sex distribution of our three geographic samples and
the additional sample are shown in Table 1. The orthopanto-
mographs were collected from dental records at (i) the Ser-
vice d’Orthopédie Dento-Faciale, Université d’Abidjian,
Ivory Coast, (ii) the Department of Orthodontics, Shiraz
University of Medical Sciences, Islamic Republic of Iran,
(iii) the Service d’Odontologie des CHU de Bordeaux et de

Montpellier, and private consultancy practices (Dr Frapier
in Montpellier and Dr De Brondeau in Bordeaux). We
obtained the consent from all the parents of the children
included in this study. For the French sample, the consent
of the Commission Nationale de l’Informatique et des
Libertés (CNIL; an organisation dedicated to information
technology and chronological rights in France) was ob-
tained.We selected orthopantomographs only from children
apparently free from any abnormal developmental param-
eters and who had a complete mandibular permanent de-
veloping dentition (children having even one tooth missing
were removed from the study). Two examiners rated the
left permanent mandibular teeth (excluding the third molar,
the more variable, to increase the accuracy of estimation) on
the radiographs, according to the eight radiographic stages
defined by Demirjian et al. (1973). One examiner randomly
selected orthopantomographs for reassessment. Disagree-
ment occurred in less than 5% of films and, at the most, by
one stage, mainly for the anterior teeth and premolars. For
all statistical procedures, the samples were divided into
males and females. The investigator did not know the chro-

Table 1 Case numbers in the samples of girls and boys of known
geographic origin (Ivory Coast, Iran and France) and one additional
sample of children whose grandparents originated from a different
continent

Age categories France France Iran Ivory Coast

(months) F M F M F M F M

≤48–54< 1 1 3 0 0 0 0 1
≤54–60< 1 0 1 3 0 0 0 0
≤60–66< 0 3 1 3 0 0 1 2
≤66–72< 2 1 4 1 1 0 4 4
≤72–78< 0 1 7 6 1 1 7 4
≤78–84< 1 3 5 7 9 4 9 11
≤84–90< 2 3 3 6 8 3 17 7
≤90–96< 10 9 11 5 13 12 13 10
≤96–102< 14 7 7 9 15 11 21 10
≤102–108< 13 12 16 10 16 9 20 4
≤108–114< 11 11 13 13 17 6 12 9
≤114–120< 14 18 24 8 20 10 5 8
≤120–126< 24 16 23 15 11 10 5 6
≤126–132< 21 15 20 8 10 11 6 10
≤132–138< 28 19 20 14 14 7 6 3
≤138–144< 26 13 18 16 12 9 9 3
≤144–150< 20 19 11 14 18 5 5 3
≤150–156< 15 17 11 6 16 10 2 2
≤156–162< 11 14 10 9 20 10 6 3
≤162–168< 13 7 11 5 9 6 2 4
≤168–174< 6 11 3 4 10 5 1 4
≤174–180< 2 4 6 2 10 3 2 0
≤180–186< 4 5 2 1 6 2 0 0
≤186–192< 3 3 4 5 13 2 0 0
≤192–198< 0 0 0 0 8 0 1 0
Total 242 212 234 170 257 136 154 108

Individuals are classified into 25 chronological age categories rep-
resenting 6-month intervals and ranging from ≤48–54<to ≤192–
198<months.
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nological age of the children when assessing the radio-
graphs.

Methods

In order to investigate the relative influence of the calcula-
tion method, for each sex, our three geographic (Europe-
an, Asian and African) samples were alternatively used as
reference (training) and target (test) samples (e.g., once
trained, the statistical model based on reference sample data
for girls from Iran, will be used to test the age of girls from
France; Fig. 1). The quality (Fig. 1) of these trials (using
different combinations of training and test samples) was
compared using two different statistical procedures: the
widely used correspondence analysis and regression (CAR)
method and the Bayesian method (Table 2). Quality is
based on accuracy, reliability and performance. Quality is
considered as globally high if it is satisfactory for most (if
not all) test samples (all possible datasets available for this
study). Moreover, in order to assess the influence of geo-
graphic-specific standards (training and test sample of the
same geographic origin), we compared the quality of Bayes-
ian predictions using non-geographic-specific and geo-

graphic-specific standards (Table 3). In the case of trials
with geographic-specific standards, we used a jackknife
resampling technique (Tukey 1977), for each sex within our
three geographic samples (by leaving each individual out to
test the dental age). In order to evaluate the global quality of
the Bayesian method, we also used a larger data set and a
jackknife resampling technique, by combining in one train-
ing sample, for each sex, our three geographic population
samples and one additional sample from France. Each in-
dividual was left out to test the dental age. The quality of
these trials for girls and boys (Fig. 2) was compared to those
using geographic-specific standards (Table 4).

Each individual was assigned to 25 chronological age
categories representing 6-month intervals: from =48–54<
to =192–198< months (Table 1). This assignment is charac-
terised by a 6-month precision. For any individual from the
test sample, each dental age assessment (by either of the two
methods compared in this study) was compared to the initial
chronological age assignment and subsequently given a
rating (Fig. 1). This rating is based on where the dental
age assessment falls with regard to the chronological age
assignment. For example, if the individual dental age as-
sessment falls in the chronological age assignment, it is
classified as 0. If the individual dental age assessment is one

Fig. 1 An example of differences in the quality of non-adult dental age assessment using two different methods of calculation (A: CAR; B:
Bayesian): rank distributions, cumulative distributions and rank distributions versus age classes
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age category (6 months) below or above the chronological
age assignment, it is classified as −1 and +1, respectively.
This rank-ordering approach leads to a rank distribution
(Fig. 1) and allows a comparison of the accuracy, reliability
and performance obtained by the two methods used in this
study: first, the CAR method, and second the Bayesian
method.

A classification into 0 corresponds to the highest ac-
curacy, the best classification, i.e. the better agreement
between age assessment and the previous chronological age
assignment (a maximum deviation of ±3 months). The
percentage of individuals classified into the rank 0 is a
measure of the reliability associated with this highest ac-
curacy. In the context of this study, the term “performance”
is used to represent the proportion of individuals with a
rating of 0 (Fig. 1). The classification into rank −1 or rank
+1 corresponds to the same accuracy level (the highest
after that of rank 0 with, respectively, −3 to −9 months,
and, +3 to +9 months). If we now consider the cumulative
proportion of individuals classified with decreasing accu-
racy levels (or increasing standard errors), we obtain a cu-
mulative distribution, f(x/y) (Fig. 1) where x represents the
standard error (e.g., 4.5 months correspond to a classifi-
cation into the range of ranks −1 to +1) and y represents its
associated reliability (represented by an area of the cumu-

lative distribution). A 95% confidence interval will be cal-
culated by considering the standard error corresponding to
the 95th percentile of the cumulative distribution, and then
by multiplying this standard error by 2. As the cumulative
distribution is not continuous, in order to provide the stan-
dard error at a 95% level, we will use the 95th percentile or a
higher reliability level (as close as possible to 95%). The
performances are compared by usingχ2 or Fisher exact tests.
Significance levels for comparisons are given (Tables 2, 3
and 4). The significance levels are also given for the dif-
ferences between cumulative distributions at the 95% reli-
ability threshold. What does it mean? This means that the
95% reliability threshold is often obtained with a lower
standard error in 1 of the 2 trials to be compared, and a
higher standard error in the other (Tables 2, 3 and 4). When
comparing the reliabilities associated with these lower and
higher standard errors, we obtain a significance level. If
the significance level is equal to or lower than 0.05, the
associated standard error is, in one of the two trials to be
compared, associated with a significantly higher reliabil-
ity (necessarily higher than 95%). We complemented the
evaluation of global quality of our trials by analysing the
shape of the rank distributions with the help of both kurtosis
and skewness. The standard “normal” distribution has a
skewness and kurtosis of zero and corresponds to a better

Fig. 2 Quality of Bayesian (with no independence assumption) non-adult dental age assessment (A: test on 902 girls; B: test on 626 boys):
rank distributions, cumulative distributions and rank distributions versus age classes
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performance (both better accuracy and reliability levels).
Kurtosis is a measure of the pointedess of the rank dis-
tribution. A peaked distribution has negative kurtosis, while
a flatter curve would have positive kurtosis (Fig. 1). If the
left hand tail is longer, skewness will be negative. If the
right hand tail is longer, skewness will be positive. Global
reliability and accuracy levels will be considered different
between two trials when both kurtosis and skewness will
be closer to 0 in one trial, as compared to the other (Tables 2,
3 and 4).

In order to assess the possible influence of age dis-
tributions (in the training and test samples) on age assess-
ment, we examined and compared graphically the rank
distributions across age classes (representing 2 years) cor-
responding to age categories grouped together (to simplify
graphic representation). These 2-year age classes are de-
fined as follows: A=48–72< months, B=72–96< months,
C=96–120< months, D=120–144< months, E=144–168<

months, F=168–192< months, the last age category =192–
198< months (individuals older than 16 years) being not
represented because of too few children available.

The CAR method

The eight radiographic stages of Demirjian et al. (1973)
(A–H from the first appearance of calcified points to the end
of root growth) are converted into a numerical score using a
conversion table. To do so, the mathematical model pro-
posed by Healy and Goldstein (1976) and advocated by
Tanner et al. (1975), was used by Demirjian et al. (1973).
This model is considered as highly suspect by Proy and
Gauthier (1985) because of its over-weighting of advanced
stages of maturation. Therefore Proy and Gauthier (1985)
recommended the use of correspondence analysis, a multi-
variate analysis procedure applicable only to categorical
features without any other limitation (Greenacre 1993). The
important points to know about this procedure are that (i) it
shows the patterns of relationships among many categorical
variables, (ii) it plots the relationships between these mul-
tiple variables on a smaller number of dimensions according
to variance explained, and (iii) the distance between vari-
ables on each dimension is standardised (i.e., items that are
close together are likely to be related). In the CAR method,
correspondence analysis is used to calculate the conversion
table. Correspondence analysis standardises the distance
between variables, i.e. each radiographic stage, on each di-
mension. The conversion table for each sample is obtained
by replacing each variable by its coordinates on the first
dimension of the correspondence analysis, which explains
the higher percentage of variance. The correspondence
analysis gives a set of numerical scores, one for each stage
of each tooth: the conversion table (Table 5). The scores of
all seven permanent left mandibular teeth are then added
together to give the global maturity index (GMI). The chro-
nological ages and the GMIs were assessed statistically by
using the simple regression analysis with the GMIs taken
as the independent variable and the chronological age as
the dependent variable, for girls and boys separately. The
dental age is the calculated age from the regression equa-
tions (Table 5), using 95% confidence limits. The standard
error of the estimates (SEE; equal to the square root of the
average squared deviation from the regression line) is a
good measure of accuracy of predictions made in that way
(Table 5). Indeed, the SEE (occasionally termed the “stan-
dard deviation of prediction errors in linear regression”
or “error of prediction”) is an overall indication of the ac-
curacy with which the fitted regression function predicts
the dependence of the chronological age on the GMI. We
should note the similarity between the SEE (bivariate data)
and the standard deviation calculated for univariate data.
All the regressions and SEEs are given at the 95% con-
fidence level. Therefore, a SEE of 14 months means that
95% confidence intervals of about ±28 months or even
more (Giles and Klepinger 1988) have to be considered in
age estimation.

Table 4 Comparisons of quality levels in Bayesian non-adult den-
tal age assessment using the total samples (girls and boys separately)
and geographic-specific standards

Criteria Samples for girls tested using jackknife

Total Iran Total Ivory
Coast

Total France

1 12.8 22.6 12.8 46.8 12.8 19.4
2 87.2 77.4 87.2 53.2 87.2 80.6
3 19.5

(95.7)
22.5
(96.0)

19.5
(95.7)

16.5
(95.1)

19.5
(95.7)

19.5
(95.9)

4 0.0002 0.1135 0.7769 0.5121 0.8923
5 15.1 3.5 15.1 4.9 15.1 13.3
6 0.0000 0.0115 0.5373
7 −0.74 1.48 −0.74 −0.75 −0.74 −1.20
8 0.89 1.36 0.89 1.00 0.89 0.70

Criteria Samples for boys tested using jackknife

Total Iran Total Ivory
Coast

Total France

1 14.6 28.7 14.6 44.4 14.6 19.3
2 85.4 71.3 85.4 55.6 85.4 80.7
3 19.5

(95.1)
22.5
(96.9)

19.5
(95.1)

16.5
(95.0)

19.5
(95.1)

22.5
(98.8)

4 0.0010 0.2232 0.5945 0.3313 0.1601 0.8090
5 14.7 10.3 14.7 21.7 14.7 6.4
6 0.2441 0.1541 0.0041
7 −1.00 −1.18 −1.00 1.59 −1.00 −0.22
8 0.64 −0.32 0.64 1.21 0.64 0.85

1 Percentage of single dental mineralisation sequences.
2 Percentage of response.
3 Standard error for the 95th percentile (or a higher reliability level,
as close as possible to 95%) of the cumulative distribution.
4 Level of significance of differences between the standard errors at
the 95% level.
5 Performance.
6 Level of significance of differences between performances.
7 Kurtosis.
8 Skewness.
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The Bayesian method

The basic concept of Bayesian statistics is very straight-
forward in dental age prediction. For an example of adult
age estimation from morphological changes in the struc-

ture of teeth see Lucy et al. (1996). Using this concept (see
Vieland 1998 for a review), we calculated the posterior
probability, or conditional probability, of an event “Ai” after
taking into account both prior information (not derived
from the sample but corresponding to a prior knowledge)

Table 5 Weighted scores for the radiographic stages defined by Demirjian et al. (1973) on seven mandibular permanent teeth (left side) in
girls and boys from three samples of known geographic origin

Tooth Origin A B C D E F G H

Boys
I1 IV 1.0814 0.3112 −1.0875

IR 0.657 −0.9643 −1.3233 −1.2024 −0.9856 0.6701
FR 2.1764 2.1868 2.1544 1.1686 −0.418

I2 IV 0.7040 1.2414 0.1079 −1.1017
IR −0.9643 −1.3344 −1.2711 −0.8179 0.8038
FR 2.1719 2.1904 1.8006 0.7709 −0.688

C IV 1.1885 0.8519 −0.4590 −0.8810 −1.8359
IR −1.1438 −1.2207 −0.3823 1.0305 1.1939
FR 2.2097 2.1551 1.4743 0.7967 −0.602 −0.935

P3 IV 1.3418 0.4940 −0.5843 −0.8813 −1.8557
IR −0.9643 −1.217 −1.1446 −0.0973 1.0199 1.1793
FR 2.17577 2.10661 1.2235 0.67314 −0.6053 −0.9438

P4 IV 0.3846 1.3302 0.2935 −0.6696 −1.1292 −1.4574
IR −1.295 −0.9643 −1.2067 −0.8367 0.1598 1.1438 1.1893
FR 2.2432 2.1441 2.1424 1.7101 0.9369 0.0869 −0.802 −0.9282

M1 IV −0.6688 0.4887 0.6761 0.4590 −1.1617
IR −0.9643 −1.295 −0.9933 0.7235
FR 2.1820 2.0246 0.8289 −0.7583

M2 IV 0.5800 0.9381 −0.1559 −0.9542 −1.0869 −1.5360
IR −0.9643 −1.3187 −1.0898 −0.6014 0.3213 0.9884 1.1844
FR 2.2367 2.2408 2.1551 1.1871 0.5465 −0.4913 −0.8647 −0.8991

Girls
I1 IV 0.8578 0.4785 −0.7101

IR 1.2772 1.5081 1.3732 1.2647 −0.6424
FR 2.7017 2.3460 1.6949 −0.3154

I2 IV 1.0014 0.9988 0.3014 −0.8682
IR 1.2772 1.5081 1.3956 1.095 −0.6968
FR 2.7017 2.3460 1.1575 −0.5700

C IV 1.1263 0.7741 0.2294 −0.9963 −1.8686
IR 1.2544 1.3989 1.4379 1.0668 −0.3901 −0.9314
FR 2.5332 2.2279 1.4596 −0.1437 −0.7950

P3 IV 1.1093 0.6965 −0.2004 −1.1650 −1.7635
IR 1.2772 1.4001 1.4178 0.8288 −0.4136 −0.929
FR 2.3325 1.8567 0.9147 −0.4546 −0.8137

P4 IV 0.7493 0.9615 0.5325 −0.3844 −1.3832 −1.6033
IR 1.2772 1.0125 1.2916 0.2925 −0.7252 −0.9558
FR 2.1589 1.7517 1.3651 0.2811 −0.6767 −0.8232

M1 IV 0.7678 0.5977 −1.0410
IR 1.2772 0.623 1.2181 −0.596
FR 2.7017 2.2818 1.1395 −0.6102

M2 IV 0.8206 0.7714 −0.0611 −0.5159 −1.4903 −1.5810
IR 1.2544 1.2222 0.8384 −0.2405 −0.8246 −0.9414
FR 2.7017 2.1155 1.4393 0.8561 −0.3140 −0.7613 −0.7772

IV Ivory Coast.
IR Iran.
FR France.

268



and observed evidence from the sample, noted event “B”.
The posterior probability is noted “P (Ai|B)”, and is cal-
culated by the Bayes’ theorem, a simple mathematical for-
mula (Phillips1973;Hartigan1983)givenas follows (Eq.1),
and whose significance was first appreciated by Bayes
(1764):

P Aið Þ�P B Aijð ÞP
P A1ð Þ�P B A1jð ÞþP A2ð Þ�P B A2jð Þþ...þP Akð Þ�P B Akjð Þ
for i ¼ 1; 2; . . . or k

(1)

In Bayes’ theorem, the posterior probability is a function
of the marginal probability (denominator) and the joint
probability (numerator). The joint probability is the prob-
ability of two events “A and B” happening together, mul-
tiplied by the prior probability of “A”. The marginal
probability is the sum of all possible joint probabilities, in
other words the probability of an event “A”, for all possible
values of another event “B”.

With the example of the calculation of the probability of
an individual to belong to an age category “i” (noted event
“Ai”) from the radiographic stages of its permanent man-
dibular teeth (noted event “B”), the Bayes’ theorem (Eq. 1)
can be expressed as follows (Eq. 2):

P Radiographic stages
Age category i

� �
� Pprior Age category ið Þ

Sum of p Radiographic stages
Age category i

� �
� Pprior Age category ið Þ

h i

(2)

across all age categories (for i=1, 2, ... or k).
Crucial to this approach is the selection of appropriate

prior probabilities (“priors”) for each age category, and here
there are several options. As samples rarely exhibit similar
age distributions, because they are usually constructed by
“availability” sampling, we will not use them as priors.
Another option is to select priors based on demographic
sources. However, such data, are hardly comparable be-
tween populations. Moreover, our goal was individual age
assessment rather than the estimation of population age
structure in large series (Konigsberg and Frankenberg
1992). In the absence of any specific knowledge, we as-
sumed the unbiased, and uniform, frequency distribution of
our 25 chronological age categories. Each individual has the
same prior probability of belonging to 1 of the 25 chro-
nological age categories (i.e., 1/25). This is a so-called
uninformative prior (Konigsberg and Frankenberg 1992).
In this study, uninformative priors are appropriate in the
calculation of the posterior probabilities because the default
presumption that individuals are derived from approxi-
mately balanced age categories allows direct comparisons
of results from different comparative samples (in terms of
size, composition and number of chronological age cate-
gories). In the Bayes’ theorem (Eq. 2), the uniform priors
appear in both numerator and denominator. Consequent-
ly, by factorisation, the uniform priors have no influence on
the calculation of the posterior probabilities.

The term p (Radiographic stages|Age category i) repre-
sents, for an age category “i”, the observed proportion (or
percentage) of individuals evincing in our sample, the se-
quence of radiographic stages under study (i.e., the radio-
graphic stages seen in the individual for who dental age
is estimated). Importantly, the radiographic stages, repre-
senting age changes in the developing permanent teeth,
correspond to a sequence of events (or pattern) even if the
true nature of the relationships, or associations, existing in
this dataset is complex. Indeed, the developing permanent
teeth do not give totally independent information about age.
We know that the radiographic stages seen in an individual
change systematically with age even if, so far, it is still not
clear how a radiographic change in one tooth can directly
cause change in another tooth. Therefore, as we would not
expect partial correlations between the age changes to ap-
proach zerowhen controlled for age, the radiographic stages
are considered as dependent variables.We acknowledge that
taking radiographic stages dependencies into consideration,
and therefore considering a dental mineralisation sequence
(DMS) rather than seven independent radiographic stages,
represents an additional difficulty. Indeed, as we consider
seven permanent teeth, the Bayesian calculations require a
important number of observations because each combina-
tion of the variables (DMS) should be represented in the
data set. If not, i.e. when a DMS represented in the test
sample is not found in the training sample (called single
DMS), no Bayesian prediction is given (no “response”).
Even if it seems logical, we will evaluate the influence of
sample size on this proportion of absence of prediction
(noted “% non-response”, which is directly proportional to
the proportion of single DMS). We will also evaluate the
influence of sample size on the quality of the method.
Another option would be the so-called naïve Bayes or sim-
ple Bayes classification, which circumvents the dependency
problem. In this case, the teeth and their radiographic stages
are assumed to be independent of one another. It is made to
simplify the computations and in this sense, it is consid-
ered to be naïve. Even if this assumption seems to be widely
used in age estimation (e.g., Lucy et al. 1996), it is un-
realistic in the case of dental mineralisation, and become
increasingly (exponentially) not tenablewhen the number of
teeth scored (called “attributes”) multiplied by the number
radiographic stages (the values of each “attribute”) increase
(Domingos and Pazzani 1997). Moreover, more compar-
isons need to be done to understand the data characteristics
which may affect the performance of naïve Bayes estima-
tions. Therefore, at this stage, we do not make the assump-
tion of independence. Instead, as the sizes of our samples
are still limited, we use the jackknife resampling technique
(Tukey 1977) when assessing the performance of the
Bayesian method (the second objective of this study, see
introduction section).

Let us now consider the example of a girl from Iran who
is 86 months of age. Her left mandibular central (I1) and
lateral (I2) incisors, canine (C), first (P3) and second (P4)
premolars, first (M1) and second (M2) molars are rated at
the following radiographic stages: 6; 6; 6; 5; 5; 7; 4,
respectively. This rating represents the conditional “event
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B” of Eq. 1 and corresponds to the DMS that can be noted
as follows: I1=6 & I2=6 & C=6 & P3=5 & P4=5 & M1=7
& M2=4. Applying Bayes’ theorem (Eq. 1) and Eq. 2, the

posterior (or conditional) probability for this girl belonging
to 1 out of the 25 chronological age categories (denoted
“i”) defined in this study, is given by Eq. 3:

P Age category i=I1 ¼ 6&12 ¼ 6&C ¼ 6&P3 ¼ 5&P4 ¼ 5&M1 ¼ 7&M2 ¼ 4ð Þ ¼
P I1 ¼ 6&I2 ¼ 6&C ¼ 6&P3 ¼ 5&P4 ¼ 5&M1 ¼ 7&M2 ¼ 4=Age category ið Þ � 1=25

Sum of p I1 ¼ 6&I2 ¼ 6&C ¼ 6&P3 ¼ 5&P4 ¼ 5&M1 ¼ 7&M2 ¼ 4=Age category ið Þ � 1=25½ �

across all 25 age categories (for i=1, 2, ... or 25) where
1/25 is the prior probability of any individual belonging to
1 out of the 25 chronological age categories (see methods
section).

A total of 25 posterior probabilities, each corresponding
to 1 out of our 25 chronological age categories, will then be
computed, to lead to a distribution of posterior probabilities.
In our example, p (=90–96| I1=6& I2=6& C=6& P3=5 &
P4=5 & M1=7 & M2=4) is the posterior probability for the
girl from Iran belonging to the =90–96< age category,
knowing that her I1, I2, C, P3, P4, M1, M2 are at
radiographic stages 6; 6; 6; 5; 5; 7 and 4, respectively. In any
training sample of girls and its =90–96< age category, we
count the number of individuals with I1=6 & I2=6&C=6&
P3=5&P4=5&M1=7&M2=4. Then we scale this number
by the total number of girls in the =90–96< age category.
This scaled value is the relative frequency or initial
probability estimate (or occurrence), denoted “P (I1=6 &
I2=6 & C=6 & P3=5 & P4=5 & M1=7 & M2=4 | Age
category i )” in Eq. 3. This initial estimate is not a true
probability because of finite sample size. This initial es-
timate is then multiplied by 1/25, the prior probability of
the girl belonging to 1 of the =90–96< chronological age
category (see methods section). The result of this multi-
plication is the numerator of Eq. 3 and corresponds to the
joint probability for the =90–96< age category. The denom-
inator, or marginal probability, corresponds to the sum of
all 25 joint probabilities, across all 25 age categories. Each
of these 25 joint probabilities is calculated, as for the
numerator of Eq. 3, by multiplying the initial probability
estimate, or relative frequency of individuals with I1=6 &
I2=6&C=6&P3=5&P4=5&M1=7&M2=4, observed in
each age category, and the prior probability of 1/25
corresponding to an unbiased frequency distribution of
age categories. Using Bayes’ theorem and Eq. 3, we obtain
the posterior probability for the girl from Iran of belonging
to the =90–96< age category in the training sample, know-
ing that her I1, I2, C, P3, P4, M1, M2 are at radiographic
stages 6; 6; 6; 5; 5; 7 and 4, respectively, by dividing the
joint probability for this age category by the marginal prob-
ability. In our example, no posterior probability can be
computed because the DMS is single (not found in the
training samples). When we consider another 86-month-old
girl from Iran with a slightly different DMS (7,7,6,5,5,7,4)
and the training sample of girls from France, a posterior
probability different from zero is obtained for only 2 out of
the 25 chronological age categories representing a 6-month
interval. This girl from Iran, in our example, falls in the =90–
96< and =96–102< months age categories with posterior

probabilities (reliabilities) of 0.412 and 0.588, respectively.
This is a posterior probability distribution and the higher
probability is obtained for the =96–102< age category. In
comparison to the chronological age, this prediction is giv-
en the rank −2, so that the results of Bayesian prediction can
be compared with the CAR data (see methods section). The
rank −1 is given to the =90–96<months age category.When
summing the posterior probabilities obtained for the ranks
−2 and −1 (the =90–96< and =96–102< months age cat-
egories), a reliability of 100% is obtained. Therefore, the
accuracy of this prediction is −15 to −3 months (classifica-
tion ranging from −2 to −1) and its reliability is 100%.

Our table of raw data has n rows, each for an individual is
set. The first column is the known age category of the
individual, seven more columns follow where each repre-
sent a particular tooth. The entry for a tooth is the radio-
graphic stage rated between 1 and 8. In order to automate
the management of this database and, more specifically, to
determine the relative frequencies of dental mineralisation
sequences seen in individuals, within each chronological
age category, we created a Microsoft Excel 2000 Visual
Basic macro with the help of Dr. F. Houët (engineer,
Laboratoire d’Anthropologie, Université Bordeaux 1). In
our Microsoft Excel 2000 Visual Basic macro, using the
relative frequencies of combinations of radiographic stages
and applying the Bayes’ theorem, we computed the mar-
ginal, the joint, and the posterior probabilities. Our Micro-
soft Excel 2000 Visual Basic macro is available upon
request to JB or YH.

Results

The “geographic-specific” conversion tables obtained for
our three samples are given in Table 5. Right away, we note
that among the youngest age classes, there are insufficient
numbers to provide good estimates of maturity indices and,
therefore, estimates of dental age. The estimated dental age
can be calculated by using the linear regression equations
given in Table 6. We acknowledge that most of the re-
gression coefficients are negative contrary to the one ob-
tained for the subsample of boys from Iran. This might be
due to the lack of the youngest individuals, in this latter
subsample, for which the sign of the weighted scores is
opposite, for the earliest dental stages (Table 5). At first
glance, we observe that the SEE ranges from 13.6 to 18.4
months (Table 6). In order to compare the quality levels
obtained between the two methods of calculation, 6 trials
using non-geographic-specific standards, for each method

(3)
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and for each sex (24 trials and 12 comparisons in total), have
been done (Table 2). In 2 comparisons out of 12 (training
sample data for girls from Iran used to test the age of girls
from France and training sample data for boys from Iran
used to test the age of boys from France), we observed a
significant difference in the performance levels of the Bayes-
ian predictions. This increase ranged from 7.7 to 12.7%. In
Fig. 1, we illustrate the comparison of trials with the training
sample data for girls from Iran used to test the age of girls
from France (A is for the CAR method and B is for the
Bayesian predictions). In 6 comparisons out of 12, we ob-
served a significant difference at the 95% reliability thresh-
old. This means that a lower standard error was observed in
one of the two methods and is associated with a signifi-
cantly higher reliability (necessarily higher than 95%): in
four comparisons the standard error is lower with the CAR
method; in two comparisons the standard error is lower with
the Bayesian method. Both global reliability and accuracy
levels are different in 2 comparisons out of 12. A skewness
and kurtosis closer to zero (corresponding to better global
accuracy and reliability levels) was found for Bayesian
predictions in one comparison and for the CAR method in
the other.

In order to compare the quality levels obtained between
trials using either geographic-specific (jackknife) or non-
geographic-specific standards, six comparisons have been
done for each sex (Table 3). In 4 comparisons out of 12 we
observed a significant difference in the performance levels
with an increase in the case of the use of non-geographic-
specific standards (tests of sample data representing girls
from Ivory Coast and Iran). This increase ranged from
9.6% to 15.6%. In 4 comparisons out of 12 we observed a
lower standard error associated with a significantly higher
reliability (necessarily higher than 95%): in 3 comparisons
the standard error was lower using geographic-specific stan-

dards; in 1 comparison the standard error was lower using
non-geographic-specific standards. Both global reliability
and accuracy levels were different in 6 comparisons out of
12, in 5 of these comparisons, a skewness and kurtosis closer
to zero was found using non-geographic-specific standards.

In order to evaluate the global quality of Bayesian pre-
dictions and their possible undermining due to high propor-
tions of single DMS (see methods section), we compared
the Bayesian predictions using a larger dataset (see methods
section) with our trials using geographic-specific standards.
Three comparisons have been done for each sex (Table 4).
In three out of six comparisons we observed a significant
difference in the performance levels with an increase in
the case of the use of a larger sample. This increase ranged
from 8.3 to 11.6%. In two out of six comparisons, we ob-
served a lower standard error associated with a significantly
higher reliability, only in the case of the use of a larger
sample. Moreover, in three out of six comparisons, both
global reliability and accuracy levels were better (skew-
ness and kurtosis closer to zero) in the case of the use of a
larger sample.

Discussion

The first issue examined in this paper is the use of methods
solely based on geographic-specific standards in order to
increase the global quality of age assessment. Our results
indicate that in the case of Bayesian predictions, the use of
geographic-specific standards does not guarantee a better
quality. In fact, the quality of age assessment does not seem
to depend predominantly on the use of geographic-specific
standards. When we evaluate quality differences between
trials using geographic-specific standards and non-geo-
graphic-specific standards, from multiple comparisons we
observed a clear trend in favour of higher accuracy and
reliability levels when using non-geographic-specific stan-
dards (Tables 3 and 4). Moreover, from the samples avail-
able in this study, we observed that themethod of calculation
is also an important source of variation, as compared to other
possible factors. Indeed, when evaluating quality for age
assessment using the same training samples but different
methods of calculation (Table 2), variations in quality can be
as high as those obtained when using different training
samples but identical methods (Table 3). However, besides
methodology, differences in quality between trials should
be explained and other possible sources of variation should
be explored. Among these possible sources of variation, the
age distribution of the sample has been evoked in the lit-
erature. A higher accuracy and reliability of estimation is
predictable in early childhood than in older children and
adolescents because (i) the variability of tooth formation
increases with chronological age, and (ii) more indicators of
short duration (more developing deciduous and permanent
teeth) are available in the former group. As a consequence,
we should find a better quality with the trials using train-
ing samples with higher proportions of young children and,
on the contrary, with lower proportions of adolescents. In
the samples of girls, the numbers of children below the age

Table 6 CAR method: regression equations and standard errors of
the estimates of the linear regressions between the chronological age
and the GMI (global maturity index) given by the multiple corre-
spondence analysis

Sub-samples Linear regression equations Standard error of the
estimates

Girls from
Ivory Coast

Chronological age=109.15
–4.950×GMI

13.56 (R2=0.740;
p<0.005)

Boys from
Ivory Coast

Chronological age=108.60
–4.685×GMI

17.91 (R2=0.610;
p<0.005)

Girls from Iran Chronological age=136.37
–4.982×GMI

18.44 (R2=0.699;
p<0.005)

Boys from Iran Chronological age=128.63
+4.4498×GMI

15.16 (R2=0.716;
p<0.005)

Girls from
France

Chronological age=132.13
–3.833 ×GMI

14.13 (R2=0.676;
p=0.000)

Boys from
France

Chronological age=131.76
–4.432×GMI

14.16 (R2=0.761;
p=0.000)

R2 Coefficient of determination.
p Significance level
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of 7 years (or 84 months) were 5 (2.0%), 11 (4.3%) and 21
(13.6%) for France, Iran and The Ivory Coast, respectively
(Table 1). Conversely, the proportions of “adolescents”
(above 13 years old, i.e. 156 months) were 39 (16.1%), 75
(29.2%) and 12 (7.8%), respectively (Table 1). These ab-
solute and relative frequencies may well explain why, in the
case of Bayesian predictions, when comparing trials using
geographic-specific and non-geographic-specific standards,
a lower standard error was found in the trial (with the jack-
knife method) using the sub-sample of girls from The Ivory
Coast (Table 3). However, we cannot explain from these
proportions only, why the performance was better for the
trial (jackknife) using the sub-sample of girls from France
(Table 3) or why the performance was even better when
using a training sample of girls from Iran, rather than a
training sample from The Ivory Coast (Table 3). Moreover,
in order to assess the possible influence of age distributions
on the quality of age assessment, we can examine and com-
pare graphically the rank distributions within and between age
classes corresponding to age categories grouped together and
representing 2 years, as shown in Fig. 1. Figure 1A cor-
responds to the quality of the trial with the training sample
data for girls from Iran used to test the age of girls from
France, with the CAR method. Figure 1B provides the
same results when using Bayesian predictions. When com-
paring the rank distributions between the 2-years age classes,
important differences are noticeable. For example, in the case
of the CAR method, the rank 0 is represented only in the
older age classes (E and F) (Fig. 1A). Moreover, when com-
paring the rank distributions across age categories, between
the two methods, an important difference arises. Almost
systematically, in comparison to the CAR results, in Bayes-
ian predictions, a wider distribution of ranks (a larger num-
ber of ranks) is represented within any defined age category.
This phenomenon, corresponding to an age apparent de-
pendent systematic error, reduces an important bias in age
assessment and has already been identified in regression
analysis: estimated ages are too old for young individuals
and too young for old individuals. A correction called “clas-
sical calibration” has been proposed to solve the problem
but it appears to be “less efficient” in terms of accuracy
(Aykroyd et al. 1997). The age-dependent systematic error
occurring when using regression analysis is illustrated in
the CAR results (Fig. 1A). On the contrary, in our Bayesian
predictions (with no independence assumption) (Fig. 1B), a
better accuracy does not depend on age. However, the
Bayesian method also raises some difficulties. The low
reliability levels seen in some trials (Tables 2 and 3) may be
due, at least in part, to a small size and, consequently (i) to a
low variability in terms of sequences and timing of dental
mineralisation within each age category and (ii) to a high
proportion of single DMS.

The second issue examined in this paper is the use of an
alternative dental age estimation method over the CAR
approach. The Bayesian method represents this alternative
but clear information about the quality level of trials should
be provided. The Bayesian method appears to provide dif-
ferent results with, in some cases (not systematically), an
overall significant increase in performance (the highest

accuracy associated with a better reliability). This differ-
ence with the CAR method has been noticed when using
rather “small” training samples and we know the limitation
of Bayesian predictions due to the use of dependent attri-
butes (see methods sections) rather than the independence
assumption. In order to evaluate the global quality (i.e., for
any or most data sets) of the Bayesian method, but also to
investigate the effect of the proportion of single DMS, we
also used a larger data set by combining in one training
sample for each sex, our three geographic population sam-
ples and our additional sample from France (Table 4). The
proportion of single DMS is then reduced to 12.8% and
14.6% for girls and boys, respectively. In both sexes, the
standard error associated with the 95% reliability threshold
is 19.5 months (Table 4). This value seems quite high in
comparison to the standard errors published by Ritz-Timme
et al. (2000). However, it is generally lower than most of the
values obtained in our trials using different training samples
(Table 3) or methods (Table 2). Moreover, even if further
trials are necessary (using training samples with lower pro-
portions of single DMS), we note that in comparison to a
maximum likelihood method of estimation, the Bayesian
method offers the possibility to assess age with both high
levels of accuracy and reliability. If not, the precision can be
reduced (by classifying into larger age classes), to meet the
accuracy and reliability needed. Doing so, we increase the
numbers of children in each of the new age classes (which
number will be reduced). This constitutes a more flexible
way to deal with dental age estimation. Moreover, results
illustrated in Fig. 2 confirm our observation that in the
case of Bayesian predictions, and contrary to age estimation
techniques based on regression, a better accuracy does not
depend on age. For example, in the Bayesian predictions on
our total samples of girls (Fig. 2A), there is always a fraction
of the sample classified into rank 0 whatever the age class
considered. This proportion ranges from 11.9% for the age
class D to 40.0% for the age class A. This has never been
observed in our trials using the CAR method. Importantly,
to explain such differences, we should again note that the
use of uninformative priors in the Bayesian method (see
methods section) corresponds to the default presumption
that individuals are derived from approximately balanced
age categories and, therefore, allows direct comparisons of
results from different comparative samples in terms of age
distribution. Moreover, the absence of the independency
assumption in our Bayesian predictions may also explain
the absence of the age dependent systematic error. Indeed,
the variability across age classes is more likely higher for
a given radiographic stage observed on an isolated tooth
than for a given mineralisation sequence from which this
isolated tooth is derived. Individuals will be distributed in
a larger age range when considering a single tooth with its
radiographic stage than when considering the same tooth
within a given DMS. Globally, the age range will decrease
when the number of teeth represented in the DMS will
increase. As a consequence, in the case of a dependent ap-
proach, within any defined age groups or classes, age esti-
mation will be based on less variability of the criterion
(DMS) used to assign age.
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Conclusion

Our results indicate that in the case of non-adult Bayesian
age predictions using dental mineralisation sequences of
permanent teeth (excluding the third molar), geographic-
specific standards do not guarantee better quality levels. In
fact, the quality of Bayesian age assessment does not seem
to depend predominantly on the use of geographic-specific
standards. Indeed, we observe a clear trend in favour of
higher accuracy and reliability levels when using non-geo-
graphic-specific standards. Moreover, from the samples
available in this study, we observe that the method of cal-
culation is also an important source of variation, as com-
pared to other possible factors.

After multiple trials using four cross-sectional sub-
samples from Europe, Africa and Asia (a total of 902 girls
and 626 boys), the Bayesian method appears to offer new
possibilities in predictions of non-adult dental age. One of
the main advantage over maximum likelihood methods of
estimation is an overall increase in accuracy with high
levels of reliability on a fraction of the test sample and,
importantly, across all age categories (contrary to methods
based on regression analysis). This is of importance because
there is an increasing need for accurate methods for age
estimation in forensic practise (Ritz-Timme et al. 2000). In
Bayesian predictions, depending on the needs and on the
problem to be solved, accuracy and reliability levels can be
chosen and discussed with some flexibility. One of the
purposes of this study is to raise awareness of a Bayesian
approach in non-adult dental age assessment. We do not
propose to systematically replace classical statistics with
Bayesian methods. We simply emphasise that the latter can
be particularly useful because, in the case of multiple at-
tributes (teeth) with a large number of scoring values (ra-
diographic stages), the independence assumption (often
used in “simple” or “naïve” Bayesian prediction) of the
regression analysis (CAR method) is violated and leads to
large errors which still need to be evaluated. The use of
Bayesian predictions with no independence assumption is
therefore recommended for further studies aiming to ex-
plore possible sources of variation in non-adult dental age
assessment.
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